If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-31+21=0
We add all the numbers together, and all the variables
4x^2-10=0
a = 4; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·4·(-10)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*4}=\frac{0-4\sqrt{10}}{8} =-\frac{4\sqrt{10}}{8} =-\frac{\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*4}=\frac{0+4\sqrt{10}}{8} =\frac{4\sqrt{10}}{8} =\frac{\sqrt{10}}{2} $
| 5*x2-3x=0 | | 2/3t+16=69 | | 2.5x-x=0.6x-5.3 | | -3x+2=-7x-10 | | -7q−7=-6q | | 10x=15x-45 | | -2t−3=t | | -2(2x+3)=-6-4x | | 6z=-1−5z | | 3(x-1.18)=2x+1 | | -6z=-1−5z | | 3h=7h+4 | | 8+2s=s | | 2x-25=20 | | X^2+0.6x-19.1=0 | | 5/2x-x=x/6-16-3 | | 4-21(1+3.5d)=22.5 | | 19+-9k=-6k-32 | | 8x+5x-76=38-6x | | 3x^2-4x-2=18 | | 19-w=3w+41 | | (4y-3)^3-y(8y-3)^2=0 | | -7(x-12)=-182 | | (x+80)+3x=180 | | 22=y/2+12 | | 5a-15=11 | | 3+9u=9u+3 | | 3000*(1.04)n=4500 | | 3/4z= | | 6m=5m+30 | | 6r+2r−7r+r−r=18 | | 8^7x=90 |